Tuesday, July 9, 2013

1307.1882 (Leandro G. Althaus et al.)

New evolutionary sequences for extremely low mass white dwarfs: Homogeneous mass and age determinations, and asteroseismic prospects    [PDF]

Leandro G. Althaus, Marcelo M. Miller Bertolami, Alejandro H. Córsico
We provide a fine and homogeneous grid of evolutionary sequences for He-core white dwarfs with masses 0.15-0.45 Msun, including the mass range for ELM white dwarfs (<0.20Msun). The grid is appropriate for mass and age determination, and to study their pulsational properties. White dwarf sequences have been computed by performing full evolutionary calculations that consider the main energy sources and processes of chemical abundance changes during white dwarf evolution. Initial models for the evolving white dwarfs have been obtained by computing the non-conservative evolution of a binary system consisting of a Msun ZAMS star and a 1.4 Msun neutron star for various initial orbital periods. To derive cooling ages and masses for He-core white dwarf we perform a least square fitting of the M(Teff, g) and Age(Teff, g) relations provided by our sequences by using a scheme that takes into account the time spent by models in different regions of the Teff-g plane. This is useful when multiple solutions for cooling age and mass determinations are possible in the case of CNO-flashing sequences. We also explore the adiabatic pulsational properties of models near the critical mass for the development of CNO flashes (~0.2 Msun). This is motivated by the discovery of pulsating white dwarfs with stellar masses near this threshold value. We obtain reliable and homogeneous mass and cooling age determinations for 58 very low-mass white dwarfs, including 3 pulsating stars. Also, we find substantial differences in the period spacing distributions of g-modes for models with stellar masses ~ 0.2 Msun, which could be used as a seismic tool to distinguish stars that have undergone CNO flashes in their early cooling phase from those that have not. Finally, for an easy application of our results, we provide a reduced grid of values useful to obtain masses and ages of He-core white dwarf.
View original: http://arxiv.org/abs/1307.1882

No comments:

Post a Comment