M. Steffen, E. Caffau, H. -G. Ludwig
We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (ximic and ximac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters Teff, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution' models tend to underestimate the true value of ximic. Extending the investigation to twelve further simulations with different Teff, log g, and [M/H], we obtain a first impression of the predicted trend of ximic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of ximic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases systematically towards lower metallicity.
View original:
http://arxiv.org/abs/1306.4307
No comments:
Post a Comment