Wednesday, June 19, 2013

1306.3986 (Jamie Tayar et al.)

Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars    [PDF]

Jamie Tayar, Marc H. Pinsonneault
Core rotation rates have been measured for red giant stars using asteroseismology. This data, along with helioseismic measurements and open cluster spin down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal poor red giant KIC 7341231 ("Otto") and intermediate mass core helium burning stars. For both we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23 to 33 times the surface value expected from standard spin down models. The minimum coupling time scale (.17 to .45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and .0052 days depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.
View original: http://arxiv.org/abs/1306.3986

No comments:

Post a Comment