D. B. de Freitas, I. C. Leão, C. E. F. Lopes, F. Paz-Chinchon, B. L. Canto Martins, S. Alves, J. R. De Medeiros
The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on rotation period and position in the Period--$T_{\rm eff}$ diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated to photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these "New Sun" candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of fourteen CoRoT stars with sub- and super-solar rotational periods, and for the Sun, itself, in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties, as far as the latter's imprints on light curve behavior is concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.
View original:
http://arxiv.org/abs/1306.4180
No comments:
Post a Comment