S. V. Nefs, J. L. Birkby, I. A. G. Snellen, S. T. Hodgkin, B. M. Sipocz, G. Kovacs, D. Mislis, D. J. Pinfield, E. L. Martin
In this paper we present the discovery of a highly unequal-mass eclipsing M-dwarf binary, providing a unique constraint on binary star formation theory and on evolutionary models for low-mass binary stars. The binary is discovered using high- precision infrared light curves from the WFCAM Transit Survey (WTS) and has an orbital period of 2.44 d. We find stellar masses of M1 = 0.53 (0.02) Msun and M2 = 0.143 (0.006) Msun (mass ratio 0.27), and radii of R1 = 0.51 (0.01) Rsun and R2 = 0.174 (0.006) Rsun. This puts the companion in a very sparsely sampled and important late M-dwarf mass-regime. Since both stars share the same age and metallicity and straddle the theoretical boundary between fully and partially convective stellar interiors, a comparison can be made to model predictions over a large range of M-dwarf masses using the same model isochrone. Both stars appear to have a slightly inflated radius compared to 1 Gyr model predictions for their masses, but future work is needed to properly account for the effects of star spots on the light curve solution. A significant, subsynchronous, ~2.56 d signal with ~2% peak-to-peak amplitude is detected in the WFCAM light curve, which we attribute to rotational modulation of cool star spots. We propose that the subsynchronous rotation is either due to a stable star-spot complex at high latitude on the (magnetically active) primary (i.e. differential rotation), or to additional magnetic braking, or to interaction of the binary with a third body or circumbinary disk during its pre-main-sequence phase.
View original:
http://arxiv.org/abs/1303.0945
No comments:
Post a Comment