J. Vos, J. V. Clausen, U. G. Jørgensen, R. H. Østensen, A. Claret, M. Hillen, K. Exter
Recent studies have shown that stellar chromospheric activity, and its effect
on convective energy transport in the envelope, is most likely the cause of
significant radius and temperature discrepancies between theoretical evolution
models and observations. We aim to determine absolute dimensions and abundances
for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed
comparison with results from recent stellar evolutionary models. uvby-beta
standard photometry was obtained with the Stromgren Automatic Telescope. The
broadening function formalism was applied on spectra observed with HERMES at
the Mercator telescope in La Palma, to obtain radial velocity curves. Masses
and radii with a precision of 0.6% and 1.0% respectively have been established
for both components of EF Aqr. The active 0.956 M_sol secondary shows star
spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows
signs of activity as well, but at a lower level. An [Fe/H] abundance of
0.00+-0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co,
and Ni. Solar calibrated evolutionary models such as Yonsei-Yale,
Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to
reproduce EF Aqr, especially for the secondary, which is 9% larger and 400 K
cooler than predicted. Models adopting significantly lower mixing length
parameters l/H_p remove these discrepancies, as seen in other solar type
binaries. For the observed metallicity, Granada models with a mixing length of
l/H_p=1.30 (primary) and 1.05 (secondary) reproduce both components at a common
age of 1.5+-0.6 Gyr. Observations of EF Aqr suggests that magnetic activity,
and its effect on envelope convection, is likely to be the cause of
discrepancies in both radius and temperature, which can be removed by adjusting
the mixing length parameter of the models downwards.
View original:
http://arxiv.org/abs/1202.4851
No comments:
Post a Comment