A. Brandenburg, K. -H. Rädler, K. Kemel
We investigate the mean electromotive force in the kinematic framework, that
is, ignoring the back-reaction of the magnetic field on the fluid velocity,
under the assumption of axisymmetric turbulence determined by the presence of
either rotation, density stratification, or both. We use an analogous approach
for the mean passive scalar flux. As an alternative to convection, we consider
forced turbulence in an isothermal layer. When using standard ansatzes, the
mean magnetic transport is then determined by nine, and the mean passive scalar
transport by four coefficients. We give results for all these transport
coefficients. We use the test-field method and the test-scalar method, where
transport coefficients are determined by solving sets of equations with
properly chosen mean magnetic fields or mean scalars. These methods are adapted
to mean fields which may depend on all three space coordinates. We find the
anisotropy of turbulent diffusion to be moderate in spite of rapid rotation or
strong density stratification. Contributions to the mean electromotive force
determined by the symmetric part of the gradient tensor of the mean magnetic
field, which were ignored in several earlier investigations, turn out to be
important. In stratified rotating turbulence, the $\alpha$ effect is strongly
anisotropic, suppressed along the rotation axis on large length scales, but
strongly enhanced at intermediate length scales. Also the $\OO\times\meanJJ$
effect is enhanced at intermediate length scales. The turbulent passive scalar
diffusivity is typically almost twice as large as the turbulent magnetic
diffusivity. Both magnetic and passive scalar diffusion are slightly enhanced
along the rotation axis, but decreased if there is gravity.
View original:
http://arxiv.org/abs/1108.2264
No comments:
Post a Comment