Thursday, July 18, 2013

1307.4510 (R. Oran et al.)

A Global Wave-Driven MHD Solar Model with a Unified Treatment of Open and Closed Magnetic Field Topologies    [PDF]

R. Oran, B. van der Holst, E. Landi, M. Jin, I. V. Sokolov, T. I. Gombosi
We describe, analyze and validate the recently developed Alfv\'en Wave Solar Model (AWSoM), a 3D global model starting from the top of the chromosphere and extending into interplanetary space (up to 1-2 AU). This model solves the extended two temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low frequency Alfv\'en waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counter-propagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment of any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model, and no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady-state (in the co-rotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfv\'en waves, the perpendicular correlation length of the turbulence, and a pseudo-reflection coefficient. We compare model results for Carrington Rotation 2063 (November-December 2007) to remote observations in the EUV and X-ray ranges from STEREO, SOHO and Hinode spacecraft, as well as to in-situ measurements performed by Ulysses. The model results are in good agreement with observations. This is the first global model capable of simultaneously reproducing the multi-wavelength observations of the lower corona and the wind structure beyond Earth's orbit.
View original: http://arxiv.org/abs/1307.4510

No comments:

Post a Comment