P. R. Wood, D. Kamath, H. Van Winckel
Fourteen stars from a sample of Magellanic Cloud objects selected to have a mid-infrared flux excess have been found to also show TiO bands in emission. The mid-infrared dust emission and the TiO band emission indicate that these stars have large amounts of hot circumstellar dust and gas in close proximity to the central star. The luminosities of the sources are typically several thousand L_sun while the effective temperatures are 4000-8000 K. Such stars could be post-AGB stars of mass 0.4-0.8 M_sun or pre-main-sequence stars (young stellar objects) with masses of 7-19 M_sun. If the stars are pre-main-sequence stars, they are substantially cooler and younger than stars at the birth line where Galactic protostars are first supposed to become optically visible out of their molecular clouds. They should therefore be hidden in their present evolutionary state. The second explanation for these stars is that they are post-AGB or post-RGB stars that have recently undergone a binary interaction when the red giant of the binary system filled its Roche lobe. Being oxygen-rich, they have gone through this process before becoming carbon stars. Most of the stars vary slowly on timescales of 1000 days or more suggesting a changing circumstellar environment. Apart from the slow variations, most stars also show variability with periods of tens to hundreds of days. One star shows a period that is rapidly decreasing and we speculate that this star may have accreted a large blob of gas and dust onto a disk whose orbital radius is shrinking rapidly. Another star has Cepheid-like pulsations of rapidly increasing amplitude suggesting a rapid rate of evolution. Seven stars show quasi-periodic variability and one star has a light curve similar to that of an eclipsing binary.
View original:
http://arxiv.org/abs/1307.4172
No comments:
Post a Comment