Rebekka Grellmann, Thomas Preibisch, Thorsten Ratzka, Stefan Kraus, Krzysztof Helminiak, Hans Zinnecker
The characterization of multiple stellar systems is an important ingredient for testing current star formation models. Stars are more often found in multiple systems, the more massive they are. A complete knowledge of the multiplicity of high-mass stars over the full range of orbit separations is thus essential to understand their still debated formation process. Observations of the Orion Nebula Cluster can help to answer the question about the origin and evolution of multiple stars. Earlier studies provide a good knowledge about the multiplicity of the stars at very small (spectroscopic) and large separations (AO, speckle) and thus make the ONC a good target for such a project. We used the NIR interferometric instrument AMBER at VLTI to observe a sample of bright stars in the ONC. We complement our data set by archival NACO observations of \theta 1 Ori A to obtain more information about the orbit of the close visual companion. Our observations resolve the known multiple systems \theta 1 Ori C and \theta 1 Ori A and provide new orbit points, which confirm the predicted orbit and the determined stellar parameters for \theta 1 Ori C. Combining AMBER and NACO data for \theta 1 Ori A we were able to follow the motion of the companion from 2003 to 2011. We furthermore find hints for a companion around \theta 1 Ori D and a previously unknown companion to NU Ori. With a probability of ~90% we can exclude further companions with masses of > 3 Msun around our sample stars for separations between ~2 mas and ~110 mas. We conclude that the companion around \theta 1 Ori A is most likely physically related to the primary star. The newly discovered possible companions further increase the multiplicity in the ONC. For our sample of two O and three B-type stars we find on average 2.5 known companions per primary, which is around five times more than for low-mass stars.
View original:
http://arxiv.org/abs/1301.3045
No comments:
Post a Comment