G. R. Gupta, L. Teriaca, E. Marsch, S. K. Solanki, D. Banerjee
We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about $60\pm 4.8$ km s$^{-1}$ and a periodicity of $\approx$14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blue-shifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e. closer to the limb), while disturbances in Doppler velocity becomes faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.
View original:
http://arxiv.org/abs/1209.3524
No comments:
Post a Comment