Thursday, August 23, 2012

1208.4539 (Y. Dai et al.)

Quadrature Observations of Wave and Non-Wave Components and Their Decoupling in an Extreme-Ultraviolet Wave Event    [PDF]

Y. Dai, M. D. Ding, P. F. Chen, J. Zhang
We report quadrature observations of an extreme-ultraviolet (EUV) wave event on 2011 January 27 obtained by the Extreme Ultraviolet Imager (EUVI) onboard \emph{Solar Terrestrial Relations Observatory} (\emph{STEREO}), and the Atmospheric Imaging Assembly (AIA) onboard the \emph{Solar Dynamics Observatory} (\emph{SDO}). Two components are revealed in the EUV wave event. A primary front is launched with an initial speed of $\sim$440 km s$^{-1}$. It appears significant emission enhancement in the hotter channel but deep emission reduction in the cooler channel. When the primary front encounters a large coronal loop system and slows down, a secondary much fainter front emanates from the primary front with a relatively higher starting speed of $\sim$550 km s$^{-1}$. Afterwards the two fronts propagate independently with increasing separation. The primary front finally stops at a magnetic separatrix, while the secondary front travels farther before it fades out. In addition, upon the arrival of the secondary front, transverse oscillations of a prominence are triggered. We suggest that the two components are of different natures. The primary front belongs to a non-wave coronal mass ejection (CME) component, which can be reasonably explained with the field-line stretching model. The multi-temperature behavior may be caused by considerable heating due to the nonlinear adiabatic compression on the CME frontal loop. For the secondary front, most probably it is a linear fast-mode magnetohydrodynamic (MHD) wave that propagates through a medium of the typical coronal temperature. X-ray and radio data provide us with complementary evidence in support of the above scenario.
View original: http://arxiv.org/abs/1208.4539

No comments:

Post a Comment