Thursday, August 23, 2012

1208.4359 (Brad N. Barlow et al.)

A Radial Velocity Study of Composite-Spectra Hot Subdwarf Stars with the Hobby-Eberly Telescope    [PDF]

Brad N. Barlow, Richard A. Wade, Sandra E. Liss, Roy H. Østensen, Hans Van Winckel
Many hot subdwarf stars show composite spectral energy distributions indicative of cool main sequence companions. Binary population synthesis (BPS) models demonstrate such systems can be formed via Roche lobe overflow or common envelope evolution but disagree on whether the resulting orbital periods will be long (years) or short (days). Few studies have been carried out to assess the orbital parameters of these spectroscopic composite binaries; current observations suggest the periods are long. To help address this problem, we selected fifteen moderately-bright (V~13) hot subdwarfs with F-K dwarf companions and monitored their radial velocities (RVs) from January 2005 to July 2008 using the bench-mounted Medium Resolution Spectrograph on the Hobby-Eberly Telescope (HET). Here we describe the details of our observing, reduction, and analysis techniques and present preliminary results for all targets. By combining the HET data with recent observations from the Mercator telescope, we are able to calculate precise orbital solutions for three systems using more than 6 years of observations. We also present an up-to-date period histogram for all known hot subdwarf binaries, which suggests those with F-K main sequence companions tend to have orbital periods on the order of several years. Such long periods challenge the predictions of conventional BPS models, although a larger sample is needed for a thorough assessment of the models' predictive success. Lastly, one of our targets has an eccentric orbit, implying some composite-spectrum systems might have formerly been hierarchical triple systems, in which the inner binary merged to create the hot subdwarf.
View original: http://arxiv.org/abs/1208.4359

No comments:

Post a Comment