K. G. Strassmeier, M. Weber, T. Granzer, S. Järvinen
We have used two robotic telescopes to obtain time-series high-resolution spectroscopy and V I and/or by photometry for a sample of 60 active stars. Orbital solutions are presented for 26 SB2 and 19 SB1 systems with unprecedented phase coverage and accuracy. The total of 6,609 R=55,000 echelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute H{\alpha}-core fluxes as a function of time. The photometry is used to infer unspotted brightness, V - I and/or b - y colors, spot-induced brightness amplitudes and precise rotation periods. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74% of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26% are rotating asynchronously of which half have Prot > Porb and e > 0. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars. For inactive, single giants with Prot > 100 d, the relation is much weaker. Our data also indicate a period-activity relation for H{\alpha} of the form RH{\alpha} \propto P - 0.24 for binaries and RH{\alpha} \propto P -0.14 for singles. Lithium abundances in our sample increase with effective temperature. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles. We also find a trend of increased Li abundance with rotational period of form log n(Li) \propto - 0.6 log Prot.
View original:
http://arxiv.org/abs/1208.3741
No comments:
Post a Comment