G. Tsiropoula, K. Tziotziou, I. Kontogiannis, M. S. Madjarska, J. G. Doyle, Y. Suematsu
Over the last two decades the uninterrupted, high-resolution observations of the Sun, from the excellent range of telescopes aboard many spacecraft complemented with observations from sophisticated ground-based telescopes have opened up a new world producing significantly more complete information on the physical conditions of the solar atmosphere than before. The interface between the lower solar atmosphere where energy is generated by subsurface convection and the corona comprises the chromosphere, which is dominated by jet-like, dynamic structures, called mottles when found in quiet regions, fibrils when found in active regions and spicules when observed at the solar limb. Recently, space observations with Hinode have led to the suggestion that there should exist two different types of spicules called Type I and Type II which have different properties. Ground-based observations in the Ca II H and K filtergrams reveal the existence of long, thin emission features called straws in observations close to the limb, and a class of short-lived events called rapid blue-shifted excursions characterized by large Doppler shifts that appear only in the blue wing of the Ca II infrared line. It has been suggested that the key to understanding how the solar plasma is accelerated and heated may well be found in the studies of these jet-like, dynamic events. However, while these structures are observed and studied for more than 130 years in the visible, but also in the UV and EUV emission lines and continua, there are still many questions to be answered. In this review we present observations and physical properties of small-scale jet-like chromospheric events observed in active and quiet regions, on the disk and at the limb and discuss their interrelationship.
View original:
http://arxiv.org/abs/1207.3956
No comments:
Post a Comment