Friday, June 1, 2012

1205.7078 (B. Mueller et al.)

New Two-Dimensional Models of Supernova Explosions by the Neutrino-Heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores    [PDF]

B. Mueller, H. -Th. Janka, A. Heger
The neutrino-driven explosion mechanism for core-collapse supernovae in its modern flavor relies on the additional support of hydrodynamical instabilities in achieving shock revival. Two possible candidates, convection and the so-called standing accretion shock instability (SASI), have been proposed for this role. In this paper, we discuss new successful simulations of supernova explosions that shed light on the relative importance of these two instabilities. While convection has so far emerged as the primary agent in self-consistent hydrodynamical models with multi-group neutrino transport, we here present the first such simulation in which the SASI grows faster while the development of convection is initially inhibited. We illustrate the features of this SASI-dominated regime using an explosion model of a 27 solar mass progenitor, which is contrasted with a convectively-dominated model of an 8.1 solar mass progenitor with subsolar metallicity, whose early post-bounce behavior is more in line with previous 11.2 and 15 solar mass explosion models. We analyze the conditions discriminating between the two different regimes, showing that a high mass-accretion rate and a short advection time-scale are conducive for strong SASI activity. We also briefly discuss some important factors for capturing the SASI-driven regime, such as general relativity, the progenitor structure, a nuclear equation of state leading to a compact proto-neutron star, and the neutrino treatment. Finally, we evaluate possible implications of our findings for 2D and 3D supernova simulations.
View original: http://arxiv.org/abs/1205.7078

No comments:

Post a Comment