Dylan P. Morgan, Andrew A. West, Ane Garcés, Silvia Catalán, Saurav Dhital, Miriam Fuchs, Nicole M. Silvestri
We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf -- main sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM high-quality pairs from the SDSS DR8 spectroscopic database. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{\alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types \leqM7. Our results show that early-type M dwarfs (\leqM4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems becomes more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk-disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully-convective stars. (Abridged)
View original:
http://arxiv.org/abs/1205.6806
No comments:
Post a Comment