M. Bzowski, J. M. Sokol, M. Tokumaru, K. Fujiki, E. Quemerais, R. Lallement, S. Ferron, P. Bochsler, D. J. McComas
The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE)
Working Team of the International Space Science Institute in Bern, Switzerland,
was to establish a common calibration of various UV and EUV heliospheric
observations, both spectroscopic and photometric. Realization of this goal
required an up-to-date model of spatial distribution of neutral interstellar
hydrogen in the heliosphere, and to that end, a credible model of the radiation
pressure and ionization processes was needed. This chapter describes the solar
factors shaping the distribution of neutral interstellar H in the heliosphere.
Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant
radiation pressure force acting on neutral H atoms in the heliosphere, solar
EUV radiation and the photoionization of heliospheric hydrogen, and their
evolution in time and the still hypothetical variation with heliolatitude.
Further, solar wind and its evolution with solar activity is presented in the
context of the charge exchange ionization of heliospheric hydrogen, and in the
context of dynamic pressure variations. Also the electron ionization and its
variation with time, heliolatitude, and solar distance is presented. After a
review of all of those topics, we present an interim model of solar wind and
the other solar factors based on up-to-date in situ and remote sensing
observations of solar wind. Results of this effort will further be utilised to
improve on the model of solar wind evolution, which will be an invaluable asset
in all heliospheric measurements, including, among others, the observations of
Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).
View original:
http://arxiv.org/abs/1112.2967
No comments:
Post a Comment