Nicola Da Rio, Massimo Robberto, Lynne A. Hillenbrand, Thomas Henning, Keivan G. Stassun
We present a new census of the Orion Nebula Cluster (ONC) over a large field
of view (>30'x30'), significantly increasing the known population of stellar
and substellar cluster members with precisely determined properties. We develop
and exploit a technique to determine stellar effective temperatures from
optical colors, nearly doubling the previously available number of objects with
effective temperature determinations in this benchmark cluster. Our technique
utilizes colors from deep photometry in the I-band and in two medium-band
filters at lambda~753 and 770nm, which accurately measure the depth of a
molecular feature present in the spectra of cool stars. From these colors we
can derive effective temperatures with a precision corresponding to better than
one-half spectral subtype, and importantly this precision is independent of the
extinction to the individual stars. Also, because this technique utilizes only
photometry redward of 750nm, the results are only mildly sensitive to optical
veiling produced by accretion. Completing our census with previously available
data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign
masses and ages down to 0.02 solar masses. At faint luminosities, we detect a
large population of background sources which is easily separated in our
photometry from the bona fide cluster members. The resulting initial mass
function of the cluster has good completeness well into the substellar mass
range, and we find that it declines steeply with decreasing mass. This suggests
a deficiency of newly formed brown dwarfs in the cluster compared to the
Galactic disk population.
View original:
http://arxiv.org/abs/1112.2711
No comments:
Post a Comment