H. Ito, W. Aoki, T. C. Beers, N. Tominaga, S. Honda
We present detailed chemical abundances for the bright carbon-enhanced metal-poor (CEMP) star BD+44 493, previously reported on by Ito et al. Our measurements confirm that BD+44 493 is an extremely metal-poor ([Fe/H]=-3.8) subgiant star with excesses of carbon and oxygen. No significant excesses are found for nitrogen and neutron-capture elements (the latter of which place it in the CEMP-no class of stars). Other elements that we measure exhibit abundance patterns that are typical for non-CEMP extremely metal-poor stars. No evidence for variations of radial velocity have been found for this star. These results strongly suggest that the carbon enhancement in BD+44 493 is unlikely to have been produced by a companion asymptotic giant-branch star and transferred to the presently observed star, nor by pollution of its natal molecular cloud by rapidly-rotating, massive, mega metal-poor ([Fe/H] < -6.0) stars. A more likely possibility is that this star formed from gas polluted by the elements produced in a "faint" supernova, which underwent mixing and fallback, and only ejected small amounts of elements of metals beyond the lighter elements. The Li abundance of BD+44 493 (A(Li)=log(Li/H)+12=1.0) is lower than the Spite plateau value, as found in other metal-poor subgiants. The upper limit on Be abundance (A(Be)=log(Be/H)+12<-1.8) is as low as those found for stars with similarly extremely-low metallicity, indicating that the progenitors of carbon- (and oxygen-) enhanced stars are not significant sources of Be, or that Be is depleted in metal-poor subgiants with effective temperatures of ~5400K.
View original:
http://arxiv.org/abs/1306.3614
No comments:
Post a Comment