Tabetha S. Boyajian, Kaspar von Braun, Gerard van Belle, Chris Farrington, Gail Schaefer, Jeremy Jones, Russel White, Harold A. McAlister, Theo A. ten Brummelaar, Stephen Ridgway, Douglas Gies, Laszlo Sturmann, Judit Sturmann, Nils H. Turner, P. J. Goldfinger, Norm Vargas
Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main- sequence stars, ranging from spectral type A7 to K0, five of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using HIPPARCOS parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity class V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data are used to derive color-temperature relations to an assortment of color indices in the Johnson (BVRIJHK), Cousins (RI), Kron (RI), Sloan (griz), and WISE (W3W4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0 to M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (Teff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple percent for the interferometrically characterized sample of main sequence stars compared to those derived via the infrared-flux method and spectroscopic analysis.
View original:
http://arxiv.org/abs/1306.2974
No comments:
Post a Comment