Tuesday, June 11, 2013

1306.2148 (J. Debosscher et al.)

KIC 11285625: a double-lined spectroscopic binary with a gamma Dor pulsator discovered from Kepler space photometry    [PDF]

J. Debosscher, C. Aerts, A. Tkachenko, K. Pavlovski, C. Maceroni, D. Kurtz, P. G. Beck, S. Bloemen, P. Degroote, R. Lombaert, J. Southworth
We present the first binary modelling results for the pulsating eclipsing binary KIC 11285625, discovered by the Kepler mission. An automated method to disentangle the pulsation spectrum and the orbital variability in high quality light curves, was developed and applied. The goal was to obtain accurate orbital and component properties, in combination with essential information derived from spectroscopy. A binary model for KIC 11285625 was obtained, using a combined analysis of high-quality space-based Kepler light curves and ground-based high-resolution HERMES echelle spectra. The binary model was used to separate the pulsation characteristics from the orbital variability in the Kepler light curve in an iterative way. We used an automated procedure to perform this task, based on the JKTEBOP binary modelling code, and adapted codes for frequency analysis and prewhitening of periodic signals. Using a disentangling technique applied to the composite HERMES spectra, we obtained a higher signal-to-noise mean component spectrum for both the primary and the secondary. A model grid search method for fitting synthetic spectra was used for fundamental parameter determination for both components. Accurate orbital and component properties of KIC 11285625 were derived, and we have obtained the pulsation spectrum of the gamma Dor pulsator in the system. Detailed analysis of the pulsation spectrum revealed amplitude modulation on a time scale of a hundred days, and strong indications of frequency splittings at both the orbital frequency, and the rotational frequency derived from spectroscopy.
View original: http://arxiv.org/abs/1306.2148

No comments:

Post a Comment