Thursday, May 30, 2013

1305.6899 (Jiong Qiu et al.)

UV and EUV Emissions at the Flare Foot-points Observed by AIA    [PDF]

Jiong Qiu, Zoe Sturrock, Dana W. Longcope, James, A. Klimchuk, Wen-Juan, Liu
A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600\AA\ emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by AIA further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when approximate steady state conditions are established in the loop. UV and EUV light curves of individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light on the nature of energy transport in a flare. We demonstrate this technique using coordinated, spatially resolved observations of UV and EUV emission from the footpoints of a C3.2 thermal flare.
View original: http://arxiv.org/abs/1305.6899

No comments:

Post a Comment