Wednesday, May 29, 2013

1305.6586 (S. Hekker et al.)

Asteroseismic surface gravity for evolved stars    [PDF]

S. Hekker, Y. Elsworth, B. Mosser, T. Kallinger, Sarbani Basu, W. J. Chaplin, D. Stello
Context: Asteroseismic surface gravity values can be of importance in determining spectroscopic stellar parameters. The independent log(g) value from asteroseismology can be used as a fixed value in the spectroscopic analysis to reduce uncertainties due to the fact that log(g) and effective temperature can not be determined independently from spectra. Since 2012, a combined analysis of seismically and spectroscopically derived stellar properties is ongoing for a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any potential biases and uncertainties in asteroseismic log(g) values is now becoming important. Aims: The seismic parameter needed to derive log(g) is the frequency of maximum oscillation power (nu_max). Here, we investigate the influence of nu_max derived with different methods on the derived log(g) values. The large frequency separation between modes of the same degree and consecutive radial orders (Dnu) is often used as an additional constraint for the determination of log(g). Additionally, we checked the influence of small corrections applied to Dnu on the derived values of log(g). Methods We use methods extensively described in the literature to determine nu_max and Dnu together with seismic scaling relations and grid-based modeling to derive log(g). Results: We find that different approaches to derive oscillation parameters give results for log(g) with small, but different, biases for red-clump and red-giant-branch stars. These biases are well within the quoted uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to the Dnu scaling relation have no significant effect on log(g). However somewhat unexpectedly, method specific solar reference values induce biases of the order of the uncertainties, which is not the case when canonical solar reference values are used.
View original: http://arxiv.org/abs/1305.6586

No comments:

Post a Comment