Thursday, May 23, 2013

1305.4954 (Joshua J. Adams et al.)

Dusty OB stars in the Small Magellanic Cloud - II: Extragalactic Disks or Examples of the Pleiades Phenomenon?    [PDF]

Joshua J. Adams, Joshua D. Simon, Alberto D. Bolatto, G. C. Sloan, Karin M. Sandstrom, Anika Schmiedeke, Jacco Th. van Loon, Joana M. Oliveira, Luke D. Keller
We use mid-infrared Spitzer spectroscopy and far-infrared Herschel photometry for a sample of twenty main sequence O9--B2 stars in the Small Magellanic Cloud (SMC) with strong 24 micron excesses to investigate the origin of the mid-IR emission. Either debris disks around the stars or illuminated patches of dense interstellar medium (ISM) can cause such mid-IR emission. In a companion paper, Paper I, we use optical spectroscopy to show that it is unlikely for any of these sources to be classical Be stars or Herbig Ae/Be stars. We focus our analysis on debris disks and cirrus hot spots. We find three out of twenty stars to be significantly extended in the mid-IR, establishing them as cirrus hot spots. We then fit the IR spectral energy distributions to determine dust temperatures and masses. We find the dust masses in the SMC stars to be larger than for any known debris disks, although this evidence against the debris disk hypothesis is circumstantial. Finally, we created a local comparison sample of bright mid-IR OB stars in the Milky Way (MW) by cross-matching the WISE and Hipparcos catalogs. All such local stars in the appropriate luminosity range that can be unambiguously classified are young stars with optical emission lines or are spatially resolved by WISE with sizes too large to be plausible debris disk candidates. We conclude that the very strong mid-IR flux excesses are most likely explained as cirrus hot spots, although we cannot rigorously rule out that a small fraction of the sample is made up of debris disks or transition disks. We present suggestive evidence that bow-shock heating around runaway stars may be a contributing mechanism to the interstellar emission. These sources, interpreted as cirrus hot spots, offer a new localised probe of diffuse interstellar dust in a low metallicity environment. (Abridged)
View original: http://arxiv.org/abs/1305.4954

No comments:

Post a Comment