Monday, May 20, 2013

1305.3970 (K. J. Li et al.)

Internal-cycle variation of solar differential rotation    [PDF]

K. J. Li, J. L. Xie, X. J. Shi
The latitudinal distributions of the yearly mean rotation rates measured respectively by Suzuki in 1998 and 2012 and Pulkkinen $\&$ Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar Equator seems to decrease since cycle 10 onwards. The coefficient $B$ of solar differential rotation, which represents the latitudinal gradient of rotation, is found smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient $B$. A new explanation is proposed to address such a solar-cycle related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred to the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity to differentiation.
View original: http://arxiv.org/abs/1305.3970

No comments:

Post a Comment