Bhuwan Joshi, Upendra Kushwaha, K. -S. Cho, Astrid M. Veronig
We present RHESSI and TRACE observations of multiple flare activity that occurred in the active region NOAA 10656 over the period of two hours on 2004 August 18. Out of four successive flares, there were three events of class C while the final event was a major X1.8 solar eruptive flare. The events during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by localized episodes of energy release occurring in the vicinity of an active region filament which produced intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of ~12 km/s. The filament eruption is accompanied with an X1.8 flare during which multiple HXR bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied with very high plasma temperatures of ~31 MK and followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in a current sheet formed below the erupting filament. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play a crucial role in destabilizing the filament by a tether-cutting process leading to large-scale eruption and X-class flare.
View original:
http://arxiv.org/abs/1305.1493
No comments:
Post a Comment