Youhei Masada, Kohei Yamada, Akira Kageyama
Spherical solar dynamo simulations are performed. Self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convection zone are numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. A solar-like differential rotation profile is established when the penetrative convection is taken into account without assuming any forcing. A large-scale magnetic field is also spontaneously organized in the underlying stable layer. The embedded field has a dipole symmetry about the equator and it shows polarity reversals in time.
View original:
http://arxiv.org/abs/1304.1252
No comments:
Post a Comment