Monday, February 18, 2013

1302.3715 (W. Nowotny et al.)

Synthetic photometry for carbon-rich giants. III. Tracing the sequence of mass-losing galactic C-type Miras    [PDF]

W. Nowotny, B. Aringer, S. Hoefner, K. Eriksson
With the help of model calculations we aim at reproducing the observational photometric findings for a large sample of well-characterised galactic C-type Mira variables losing mass at different rates. We used dynamic model atmospheres, describing the outer layers of C-rich Miras, which are severly affected by dynamic effects. Based on the resulting structures and under the assumptions of chemical equilibrium as well as LTE, we computed synthetic spectra and synthetic broad-band photometry (Johnson-Cousins-Glass). A set of five representative models with different stellar parameters describes a sequence from less to more evolved objects with steadily increasing mass-loss rates. This allowed us to study the significant influence of circumstellar dust on the spectral energy distributions and the (amplitudes of) lightcurves in different filters. We tested the photometric properties (mean NIR magnitudes, colours, and amplitudes) and other characteristics of the models (mass-loss rates, periods, and bolometric corrections) by comparing these with the corresponding observational data adopted from the literature. Using different kinds of diagrams we illustrate where the models are located in a supposed evolutionary sequence defined by observed C-type Mira samples. Based on comparisons of galactic targets with empirical relations derived for C stars in the Large Magellanic Cloud we discuss the relevance of metallicity and excess carbon (C--O) for the development of dust-driven winds. Having investigated the dynamic model atmospheres from different (mainly photometric) perspectives, we conclude that our modelling approach (meaning the combination of numerical method and a suitable choice of model parameters) is able to describe C-rich long-period variables over a wide range of mass-loss rates, i.e., from moderately pulsating objects without any dusty wind to highly dust-enshrouded Carbon Miras.
View original: http://arxiv.org/abs/1302.3715

No comments:

Post a Comment