William K. Teets, David A. Weintraub, Joel H. Kastner, Nicolas Grosso, Kenji Hamaguchi, Michael Richmond
EX Lupi is the prototype for a class of young, pre-main sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS ToO observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a ~0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main sequence stars. From 2008 March through October, this cool plasma component appears to fade as EX Lupi returns to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.
View original:
http://arxiv.org/abs/1210.1250
No comments:
Post a Comment