Qiao Song, Jun Zhang, Shuhong Yang, Yang Liu
The magnetic non-potentiality is important for understanding flares and other solar activities in active regions (ARs). Five non-potential parameters, i.e., electric current, current helicity, source field, photospheric free energy, and angular shear, are calculated in this work to quantify the non-potentiality of NOAA AR 11158. Benefited from high spatial resolution, high cadence, and continuously temporal coverage of vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, both the long-term evolution of the AR and the rapid change during flares have been studied. We confirmed that, comparing with the magnetic flux, the magnetic non-potentiality has a closer connection with the flare, and the emerging flux regions are important for the magnetic non-potentiality and flares. The main results of this work are as follows. (1) The vortex in the source field directly displays the deflection of horizontal magnetic field. The deflection is corresponding to the fast rotated sunspot with a time delay, which suggests that the sunspot rotation leads to an increase of the non-potentiality. (2) Two areas that have evident changes of the azimuth of the vector magnetic field are found near the magnetic polarity inversion line. The change rates of the azimuth are about 1.3 deg/h and 3.6 deg/h, respectively. (3) Rapid and prominent increases are found in the variation of helicity during four flares in their initial brightening regions. The recovery of the increases takes 3-4 h for the two biggest flares (X2.2 and M6.6), while only takes about 2 h for the other two smaller flares (M2.2 and M1.6).
View original:
http://arxiv.org/abs/1209.6192
No comments:
Post a Comment