Friday, September 14, 2012

1209.2952 (Eva Mundprecht et al.)

Multidimensional realistic modelling of Cepheid-like variables. I: Extensions of the ANTARES code    [PDF]

Eva Mundprecht, Herbert J. Muthsam, Friedrich Kupka
We have extended the ANTARES code to simulate the coupling of pulsation with convection in Cepheid-like variables in an increasingly realistic way, in particular in multidimensions, 2D at this stage. Present days models of radially pulsating stars assume radial symmetry and have the pulsation-convection interaction included via model equations containing ad hoc closures and moreover parameters whose values are barely known. We intend to construct ever more realistic multidimensional models of Cepheids. In the present paper, the first of a series, we describe the basic numerical approach and how it is motivated by physical properties of these objects which are sometimes more, sometimes less obvious. - For the construction of appropriate models a polar grid co-moving with the mean radial velocity has been introduced to optimize radial resolution throughout the different pulsation phases. The grid is radially stretched to account for the change of spatial scales due to vertical stratification and a new grid refinement scheme is introduced to resolve the upper, hydrogen ionisation zone where the gradient of temperature is steepest. We demonstrate that the simulations are not conservative when the original weighted essentially non-oscillatory method implemented in ANTARES is used and derive a new scheme which allows a conservative time evolution. The numerical approximation of diffusion follows the same principles. Moreover, the radiative transfer solver has been modified to improve the efficiency of calculations on parallel computers. We show that with these improvements the ANTARES code can be used for realistic simulations of the convection-pulsation interaction in Cepheids. We discuss the properties of several models which include the upper 42% of a Cepheid along its radial coordinate, assume different opening angles, and are suitable for an in-depth study of convection and pulsation.
View original: http://arxiv.org/abs/1209.2952

No comments:

Post a Comment