Thursday, September 6, 2012

1209.0981 (Stacie L. Powell et al.)

The Periodic Spectroscopic Variability of FU Orionis    [PDF]

Stacie L. Powell, Mike Irwin, Jerome Bouvier, Cathie J. Clarke
FU Orionis systems are young stars undergoing outbursts of disc accretion and where the optical spectrum contains lines associated with both the disc photosphere and a wind component. Previous observations of the prototype FU Orionis have suggested that the wind lines and the photospheric lines are modulated with periods of 14.54 and 3.54 days respectively (Herbig et al. 2003). We have re-observed the system at higher spectral resolution, by monitoring variations of optical line profiles over 21 nights in 2007 and have found periods of 13.48 and 3.6 days in the wind and disc components consistent with the above: this implies variability mechanisms that are stable over at least a decade. In addition we have found: i) that the variations in the photospheric absorption lines are confined to the blue wing of the line (around -9km/s): we tentatively ascribe this to an orbiting hotspot in the disc which is obscured by a disc warp during its receding phase. ii) The wind period is manifested not only in blue-shifted Halpha absorption, but also in red-shifted emission of Halpha and Hbeta, as well as in blue-shifted absorption of Na I D, Li I and Fe II. iii) We find that the periodic modulation of blue-shifted Halpha absorption at around -100km/s, is phase lagged with respect to variations in the other lines by ~1.8days. This is consistent with a picture in which variations at the wind base first affect chromospheric emission and then low velocity blue-shifted absorption, followed - after a lag equal to the propagation time of disturbances across the wind's acceleration region - by a response in high velocity blue-shifted absorption. Such arguments constrain the size of the acceleration region to ~10^12cm. We discuss possible mechanisms for periodic variations within the innermost 0.1AU of the disc, including the possibility that these variations indicate the presence of an embedded hot Jupiter.
View original: http://arxiv.org/abs/1209.0981

No comments:

Post a Comment