Wednesday, August 8, 2012

1208.1459 (Cong Yu)

Magnetar Giant Flares --- Flux Rope Eruptions in Multipolar Magnetospheric Magnetic Fields    [PDF]

Cong Yu
We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. A self-consistent stationary, axisymmetric model of the magnetar magnetosphere is constructed based on a force-free magnetic field configuration which contains a helically twisted force-free flux rope. Given the complex multipolar magnetic fields at the magnetar surface, we also develop a convenient numerical scheme to solve the GS equation. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curves contain two branches, one represents a stable equilibrium branch, the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetar magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.
View original: http://arxiv.org/abs/1208.1459

No comments:

Post a Comment