Monday, August 6, 2012

1208.0807 (Steve Price et al.)

Time-Correlated Structure in Spin Fluctuations in Pulsars    [PDF]

Steve Price, Bennett Link, Steve Shore, David Nice
We study statistical properties of stochastic variations in pulse arrival times, timing noise, in radio pulsars using a new analysis method applied in the time domain. The method proceeds in two steps. First, we subtract low-frequency wander using a high-pass filter. Second, we calculate the discrete correlation function of the filtered data. As a complementary method for measuring correlations, we introduce a statistic that measures the dispersion of the data with respect to the data translated in time. The analysis methods presented here are robust and of general usefulness for studying arrival time variations over timescales approaching the average sampling interval. We apply these methods to timing data for 32 pulsars. In two radio pulsars, PSRs B1133+16 and B1933+16, we find that fluctuations in arrival times are correlated over timescales of 10 - 20 d with the distinct signature of a relaxation process. Though this relaxation response could be magnetospheric in origin, we argue that damping between the neutron star crust and interior liquid is a more likely explanation. Under this interpretation, our results provide the first evidence independent from pulsar spin glitches of differential rotation in neutron stars. PSR B0950+08, shows evidence for quasi-periodic oscillations that could be related to mode switching.
View original: http://arxiv.org/abs/1208.0807

No comments:

Post a Comment