E. S. Wirström, S. B. Charnley, M. A. Cordiner, S. N. Milam
Organic material found in meteorites and interplanetary dust particles is enriched in D and 15N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and 15N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large 15N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, 15N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both 15N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest 15N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that Solar System 15N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.
View original:
http://arxiv.org/abs/1208.0192
No comments:
Post a Comment