Rodolfo Gustavo Cionco, Rosa Hilda Compagnucci
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun's acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle. This process begins about 40 years before the solar angular momentum inversions, i.e., before Maunder Minimum, Dalton Minimum, and before the present extended minimum. Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima. We discuss the possible implications of these results for the solar cycle including the present extended minimum. (Please read the complete Abstract in the paper)
View original:
http://arxiv.org/abs/1207.5436
No comments:
Post a Comment