Thursday, July 12, 2012

1207.2494 (Maria V. Rodriguez-Ledesma et al.)

An unusual very low-mass high-amplitude pre-main sequence periodic variable    [PDF]

Maria V. Rodriguez-Ledesma, Reinhard Mundt, Mansur Ibrahimov, Sergio Messina, Padmakar Parihar, Frederic Hessman, Catarina Alves de Oliveira, William Herbst
We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 has a spectral type of M6 and an estimated mass between 0.04-0.1Msun. The analysis of the data suggests that the periodic variability of CHS7797 is most probably caused by an orbital motion. Variability as a result of rotational brightness modulation by spots is excluded by the lack of any color-brightness correlation in the optical. The latter indicates that CHS7797 is most probably occulted by circumstellar matter in which grains have grown from typical 0.1 microns to 1-2 micron sizes. We discuss two possible scenarios in which CHS7797 is periodically eclipsed by structures in a disc, namely that CHS7797 is a single object with a circumstellar disc, or that CHS7797 is a binary system, similar to KH15D, in which an inclined circumbinary disc is responsible of the variability. Possible reasons for the typical 0.3mag variations in I-band at a given phase are discussed.
View original: http://arxiv.org/abs/1207.2494

No comments:

Post a Comment