Tuesday, July 10, 2012

1207.2056 (S. Casassus et al.)

The dynamically disrupted gap in HD 142527    [PDF]

S. Casassus, S. Perez M., A. Jordán, F. Ménard, J. Cuadra, M. R. Schreiber, A. S. Hales, B. Ercolano
The vestiges of planet formation have been observed in debris disks harboring young and massive gaseous giants. The process of giant planet formation is terminated by the dissipation of gas in the protoplanetary disk. The gas-rich disk around HD142527 features a small inner disk, a large gap from \sim10 to \sim140AU, and a massive outer disk extending out to \sim300AU. The gap could have been carved-out by a giant planet. We have imaged the outer regions of this gap using the adaptive-optics camera NICI on Gemini South. Our images reveal that the disk is dynamically perturbed. The outer boundary of the roughly elliptical gap appears to be composed of several segments of spiral arms. The stellar position is offset by 0.17+-0.02" from the centroid of the cavity, consistent with earlier imaging at coarser resolutions. These transient morphological features are expected in the context of disk evolution in the presence of a perturbing body located inside the cavity. We perform hydro-dynamical simulations of the dynamical clearing of a gap in a disk. A 10Mjup body in a circular orbit at r = 90AU, perturbs the whole disks, even after thousands of orbits. By then the model disk has an eccentric and irregular cavity, flanked by tightly wound spiral arms, but it is still evolving far from steady state. A particular transient configuration that is a qualitative match to HD142527 is seen at 1.7Myr.
View original: http://arxiv.org/abs/1207.2056

No comments:

Post a Comment