1207.1633 (Helmut Z. Baumert)
Helmut Z. Baumert
This study starts with balances deduced by Baumert and Peters (2004, 2005) from results of stratified-shear experiments made in channels and wind tunnels by Itsweire (1984) and Rohr and Van Atta (1987), and of free-decay experiments in a resting stratified tank by Dickey and Mellor (1980). Using a modification of Canuto's (2002) ideas on turbulence and waves, these balances are merged with an (internal) gravity-wave energy balance presented for the open ocean by Gregg (1989), without mean-flow shear. The latter was augmented by a linear (viscous) friction term. Gregg's wave-energy source is interpreted on its long-wave spectral end as internal tides, topography, large-scale wind, and atmospheric low-pressure actions. In addition, internal eigen waves, generated by mean-flow shear, and the aging of the wave field from a virginal (linear) into a saturated state are taken into account. Wave packets and turbulence are treated as particles (vortices, packets) by ensemble kinetics so that the loss terms in all three balances have quadratic form. Following a proposal by Peters (2008), the mixing efficiency of purely wave-generated turbulence is treated as a universal constant, as well as the turbulent Prandtl number under neutral conditions. It is shown that: (i) in the wind tunnel, eigen waves are switched off, (ii) due to remotely generated long waves or other non-local energy sources, coexistence equilibria of turbulence and waves are stable even at Richardson numbers as high as $10^3$; (iii) the three-equation system is compatible with geophysically shielded settings like certain stratified laboratory flows. The agreement with a huge body of observations surprises. Gregg's (1989) wave-model component and the a.m. universal constants taken apart, the equations contain only one additional dimensionless parameter for the eigen-wave closure, estimated as $Y\approx 1.35.$
View original:
http://arxiv.org/abs/1207.1633
No comments:
Post a Comment