Thursday, May 31, 2012

1205.6517 (Dean M. Townsley et al.)

Laterally Propagating Detonations in Thin Helium Layers on Accreting White Dwarfs    [PDF]

Dean M. Townsley, Kevin Moore, Lars Bildsten
Theoretical work has shown that intermediate mass (0.01Msun0.8Msun) WDs, these helium shells can be dense enough (5x10^5 g/cc) that the convectively burning region runs away on a timescale comparable to the sound travel time across the shell; raising the possibility for an explosive outcome. The nature of the explosion (i.e. deflagration or detonation) remains ambiguous. In the case of detonation, this causes a laterally propagating front whose properties in these geometrically thin and low density shells we begin to study here. Our calculations show that the radial expansion time of <0.1 s leads to incomplete helium burning, in agreement with recent work by Sim and collaborators, but that the nuclear energy released is still adequate to realize a self-sustaining detonation propagating laterally at slower than the Chapman-Jouguet speed. Our simulations resolve the subsonic region behind the front and are consistent with a direct computation of the reaction structure from the shock strength. The ashes are typically He rich, and consist of predominantly Ti-44, Cr-48, along with a small amount of Fe-52, with very little Ni-56 and with significant Ca-40 in carbon-enriched layers. If this helium detonation results in a Type Ia Supernova, its spectral signatures would appear for the first few days after explosion. (abridged)
View original: http://arxiv.org/abs/1205.6517

No comments:

Post a Comment