S. W. Feng, Y. Chen, X. L. Kong, G. Li, H. Q. Song, X. S. Feng, Ying Liu
It has been suggested that type II radio bursts are due to energetic electrons accelerated at coronal shocks. Radio observations, however, have poor or no spatial resolutions to pinpoint the exact acceleration locations of these electrons. In this paper, we discuss a promising approach to infer the electron acceleration location by combining radio and white light observations. The key assumption is to relate specific morphological features (e.g. spectral bumps) of the dynamic spectra of type II radio bursts, to imaging features (e.g. CME going into a streamer) along the CME (and its driven shock) propagation. In this study, we examine the CME-streamer interaction for the solar eruption dated on 2003 November 1. The presence of spectral bump in the relevant type II radio burst is identified, which is interpreted as a natural result of the shock-radio emitting region entering the dense streamer structure. The study is useful for further determinations of the location of type II radio burst and the associated electron acceleration by CME-driven shock.
View original:
http://arxiv.org/abs/1204.5569
No comments:
Post a Comment