D. H. Nickeler, J. P. Goedbloed, H. -J. Fahr
A stellar wind passing through the reverse shock is deflected into the astrospheric tail and leaves the stellar system either as a sub-Alfvenic or as a super-Alfvenic tail flow. An example is our own heliosphere and its heliotail. We present an analytical method of calculating stationary, incompressible, and field-aligned plasma flows in the astrotail of a star. We present a recipe for constructing an astrosphere with the help of only a few parameters, like the inner Alfven Mach number and the outer Alfven Mach number, the magnetic field strength within and outside the stellar wind cavity, and the distribution of singular points of the magnetic field within these flows. Within the framework of a one-fluid approximation, it is possible to obtain solutions of the MHD equations for stationary flows from corresponding static MHD equilibria, by using noncanonical mappings of the canonical variables. The canonical variables are the Euler potentials of the magnetic field of magnetohydrostatic equilibria. Thus we start from static equilibria determined by the distribution of magnetic neutral points, and assume that the Alfven Mach number for the corresponding stationary equilibria is finite. The topological structure determines the geometrical structure of the interstellar gas - stellar wind interface. Additional boundary conditions like the outer magnetic field and the jump of the magnetic field across the astropause allow determination of the noncanonical transformations. This delivers the strength of the magnetic field at every point in the astrotail region beyond the reverse shock. The mathematical technique for describing such a scenario is applied to astrospheres in general, but is also relevant for the heliosphere. It shows the restrictions of the outer and the inner magnetic field strength in comparison with the corresponding Alfven Mach numbers in the case of subalfvenic flows.
View original:
http://arxiv.org/abs/1203.5500
No comments:
Post a Comment