A. Malanushenko, M. H. Yusuf, D. W. Longcope
In the present work we study evolution of magnetic helicity in the solar
corona. We compare the rate of change of a quantity related to the magnetic
helicity in the corona to the flux of magnetic helicity through the photosphere
and find that the two rates are similar. This gives observational evidence that
helicity flux across the photosphere is indeed what drives helicity changes in
solar corona during emergence.
For the purposes of estimating coronal helicity we neither assume a strictly
linear force-free field, nor attempt to construct a non-linear force-free
field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a
best-matching line of a linear force-free field and allow the twist parameter
alpha to be different for each line. This method was introduced and its
applicability was discussed in Malanushenko et. al. (2009).
The object of the study is emerging and rapidly rotating AR 9004 over about
80 hours. As a proxy for coronal helicity we use the quantity
averaged over many reconstructed lines of magnetic field. We argue that it is
approximately proportional to "flux-normalized" helicity H/Phi^2, where H is
helicity and Phi is total enclosed magnetic flux of the active region. The time
rate of change of such quantity in the corona is found to be about 0.021
rad/hr, which is compatible with the estimates for the same region obtained
using other methods Longcope et. al. (2007), who estimated the flux of
normalized helicity of about 0.016 rad/hr.
View original:
http://arxiv.org/abs/1202.5421
No comments:
Post a Comment