T. Wiegelmann, J. K. Thalmann, B. Inhester, T. Tadesse, X. Sun, J. T. Hoeksema
The SDO/HMI instruments provide photospheric vector magnetograms with a high
spatial and temporal resolution. Our intention is to model the coronal magnetic
field above active regions with the help of a nonlinear force-free
extrapolation code. Our code is based on an optimization principle and has been
tested extensively with semi-analytic and numeric equilibria and been applied
before to vector magnetograms from Hinode and ground based observations.
Recently we implemented a new version which takes measurement errors in
photospheric vector magnetograms into account. Photospheric field measurements
are often due to measurement errors and finite nonmagnetic forces inconsistent
as a boundary for a force-free field in the corona. In order to deal with these
uncertainties, we developed two improvements: 1.) Preprocessing of the surface
measurements in order to make them compatible with a force-free field 2.) The
new code keeps a balance between the force-free constraint and deviation from
the photospheric field measurements. Both methods contain free parameters,
which have to be optimized for use with data from SDO/HMI. Within this work we
describe the corresponding analysis method and evaluate the force-free
equilibria by means of how well force-freeness and solenoidal conditions are
fulfilled, the angle between magnetic field and electric current and by
comparing projections of magnetic field lines with coronal images from SDO/AIA.
We also compute the available free magnetic energy and discuss the potential
influence of control parameters.
View original:
http://arxiv.org/abs/1202.3601
No comments:
Post a Comment