K. -P. Schroeder, M. Mittag, M. I. Perez Martinez, M. Cuntz, J. H. M. M. Schmitt
Aims: We demonstrate the universal character of the quiet-Sun chromosphere
among inactive stars (solar-type and giants). By assessing the main physical
processes, we shed new light on some common observational phenomena. Methods:
We discuss measurements of the solar Mt. Wilson S-index, obtained by the
Hamburg Robotic Telescope around the extreme minimum year 2009, and compare the
established chromospheric basal Ca II K line flux to the Mt. Wilson S-index
data of inactive ("flat activity") stars, including giants. Results: During the
unusually deep and extended activity minimum of 2009, the Sun reached S-index
values considerably deeper than in any of its previously observed minima. In
several brief periods, the Sun coincided exactly with the S-indices of inactive
("flat", presumed Maunder Minimum-type) solar analogues of the Mt. Wilson
sample; at the same time, the solar visible surface was also free of any plages
or remaining weak activity regions. The corresponding minimum Ca II K flux of
the quiet Sun and of the presumed Maunder Minimum-type stars in the Mt. Wilson
sample are found to be identical to the corresponding Ca II K chromospheric
basal flux limit. Conclusions: We conclude that the quiet-Sun chromosphere is a
universal phenomenon among inactive stars. Its mixed-polarity magnetic field,
generated by a local, "fast" turbulent dynamo finally provides a natural
explanation for the minimal soft X-ray emission observed for inactive stars.
Given such a local dynamo also works for giant chromospheres, albeit on larger
length scales, i.e., l ~ R/g, with R and g as stellar radius and surface
gravity, respectively, the existence of giant spicular phenomena and the
guidance of mechanical energy toward the acceleration zone of cool stellar
winds along flux-tubes have now become traceable.
View original:
http://arxiv.org/abs/1202.3314
No comments:
Post a Comment