S. Mathur, T. S. Metcalfe, M. Woitaszek, H. Bruntt, G. A. Verner, J. Christensen-Dalsgaard, O. L. Creevey, G. Dogan, S. Basu, C. Karoff, D. Stello, T. Appourchaux, T. L. Campante, W. J. Chaplin, R. A. Garcia, T. R. Bedding, O. Benomar, A. Bonanno, S. Deheuvels, Y. Elsworth, P. Gaulme, J. A. Guzik, R. Handberg, S. Hekker, W. Herzberg, M. J. P. F. G. Monteiro, L. Piau, P. -O. Quirion, C. Regulo, M. Roth, D. Salabert, A. Serenelli, M. J. Thompson, R. Trampedach, T. R. White, J. Ballot, I. M. Brandao, J. Molenda-Zakowicz, H. Kjeldsen, J. D. Twicken, K. Uddin, B. Wohler
Asteroseismology with the Kepler space telescope is providing not only an
improved characterization of exoplanets and their host stars, but also a new
window on stellar structure and evolution for the large sample of solar-type
stars in the field. We perform a uniform analysis of 22 of the brightest
asteroseismic targets with the highest signal-to-noise ratio observed for 1
month each during the first year of the mission, and we quantify the precision
and relative accuracy of asteroseismic determinations of the stellar radius,
mass, and age that are possible using various methods. We present the
properties of each star in the sample derived from an automated analysis of the
individual oscillation frequencies and other observational constraints using
the Asteroseismic Modeling Portal (AMP), and we compare them to the results of
model-grid-based methods that fit the global oscillation properties. We find
that fitting the individual frequencies typically yields asteroseismic radii
and masses to \sim1% precision, and ages to \sim2.5% precision (respectively 2,
5, and 8 times better than fitting the global oscillation properties). The
absolute level of agreement between the results from different approaches is
also encouraging, with model-grid-based methods yielding slightly smaller
estimates of the radius and mass and slightly older values for the stellar age
relative to AMP, which computes a large number of dedicated models for each
star. The sample of targets for which this type of analysis is possible will
grow as longer data sets are obtained during the remainder of the mission.
View original:
http://arxiv.org/abs/1202.2844
No comments:
Post a Comment