Monday, February 13, 2012

1202.2343 (K. A. Kretke et al.)

A Method to Constrain the Size of the Protosolar Nebula    [PDF]

K. A. Kretke, H. F. Levison, M. W. Buie, A. Morbidelli
Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i > 50 deg), low-eccentricity orbits (q > 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr time scales. To date, surveys have not detected any Kuiper Belt Objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey (DES) and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (R_D > 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope (LSST) will all us to further constrain the size of the protoplanetary disk.
View original: http://arxiv.org/abs/1202.2343

No comments:

Post a Comment