P. Dufour, M. Kilic, G. Fontaine, P. Bergeron, C. Melis, J. Bochanski
We present a new model atmosphere analysis of the most metal contaminated
white dwarf known, the DBZ SDSS J073842.56+183509.06. Using new high resolution
spectroscopic observations taken with Keck and Magellan, we determine precise
atmospheric parameters and measure abundances of 14 elements heavier than
helium. We also report new Spitzer mid-infrared photometric data that are used
to better constrain the properties of the debris disk orbiting this star. Our
detailed analysis, which combines data taken from 7 different observational
facilities (GALEX, Gemini, Keck, Magellan, MMT, SDSS and Spitzer) clearly
demonstrate that J0738+1835 is accreting large amounts of rocky
terrestrial-like material that has been tidally disrupted into a debris disk.
We estimate that the body responsible for the photospheric metal contamination
was at least as large Ceres, but was much drier, with less than 1% of the mass
contained in the form of water ice, indicating that it formed interior to the
snow line around its parent star. We also find a correlation between the
abundances (relative to Mg and bulk Earth) and the condensation temperature;
refractory species are clearly depleted while the more volatile elements are
possibly enhanced. This could be the signature of a body that formed in a lower
temperature environment than where Earth formed. Alternatively, we could be
witnessing the remains of a differentiated body that lost a large part of its
outer layers.
View original:
http://arxiv.org/abs/1201.6252
No comments:
Post a Comment