Philip S. Muirhead, John Asher Johnson, Kevin Apps, Joshua A. Carter, Timothy D. Morton, Daniel C. Fabrycky, J. Sebastian Pineda, Michael Bottom, Barbara Rojas-Ayala, Everett Schlawin, Katherine Hamren, Kevin R. Covey, Justin R. Crepp, Keivan G. Stassun, Joshua Pepper, Leslie Hebb, Evan N. Kirby, Andrew W. Howard, Howard T. Isaacson, Geoffrey W. Marcy, David Levitan, Tanio Diaz-Santos, Lee Armus, James P. Lloyd
We present the characterization of the star KOI 961, an M dwarf with transit
signals indicative of three short-period exoplanets, originally discovered by
the Kepler Mission. We proceed by comparing KOI 961 to Barnard's Star, a
nearby, well-characterized mid-M dwarf. By comparing colors, optical and
near-infrared spectra, we find remarkable agreement between the two, implying
similar effective temperatures and metallicities. Both are metal-poor compared
to the Solar neighborhood, have low projected rotational velocity, high
absolute radial velocity, large proper motion and no quiescent H-alpha
emission--all of which is consistent with being old M dwarfs. We combine
empirical measurements of Barnard's Star and expectations from evolutionary
isochrones to estimate KOI 961's mass (0.13 +/- 0.05 Msun), radius (0.17 +/-
0.04 Rsun) and luminosity (2.40 x 10^(-3.0 +/- 0.3) Lsun). We calculate KOI
961's distance (38.7 +/- 6.3 pc) and space motions, which, like Barnard's Star,
are consistent with a high scale-height population in the Milky Way. We perform
an independent multi-transit fit to the public Kepler light curve and
significantly revise the transit parameters for the three planets. We calculate
the false-positive probability for each planet-candidate, and find a less than
1% chance that any one of the transiting signals is due to a background or
hierarchical eclipsing binary, validating the planetary nature of the transits.
The best-fitting radii for all three planets are less than 1 Rearth, with KOI
961.03 being Mars-sized (Rp = 0.57 +/- 0.18 Rearth), and they represent some of
the smallest exoplanets detected to date.
View original:
http://arxiv.org/abs/1201.2189
No comments:
Post a Comment